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In this paper, a broadly biologically inspired model of categorical perception in human vision is

explored and results from the originators of the model are replicated. Categorical perception is a

cognitive phenomenon that occurs as a result of category learning. The model in this paper provides

computational evidence that categorical perception may occur at later stages of processing without

the need for feedback mechanisms to earlier areas as has previously been suggested. Evidence of the

model’s limitations through additional simulations is provided showing that the CP effect may not be

specific to the later stage of processing but to how and where the signal indicating category member-

ship is provided to the model. Lastly, evidence that the model generalizes well to novel variations of

the stimuli is compared to human data.
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1. Introduction

A key property of the human brain is its ability to make sense of an otherwise noisy and chaotic

world. One of the fundamental mechanisms underlying this ability is categorization. The categories

that an individual possesses guide their behaviour such that they behave differently towards different

objects, events, etc. It has been noted that categorization is essential to cognition itself and may

even be the basis for the vast majority of cognitive tasks [1]. Categorization allows us to deal with

the infinite variation in the world effectively and is also the process by which continuous analog

sensory perception becomes discrete symbolic processing (e.g. categorical). Identifying the category

to which a stimulus belongs allows to rapidly access information about the potential properties of

the stimulus and how we might respond to it.

Although some of our categories may be innate [2], most categories are arguably acquired through-

out a lifetime. An interesting question that arises with respect to category learning concerns the



2 Categorical Perception in the Human Visual System

effect that this acquired knowledge may have on functional areas involved in perception. Categorical

perception results from having learnt to categorize and appears to be a phenomenon revealing the

influence of high-level category learning on feature-based perception [3]. In order to successfully

categorize stimuli, the relevant features of a given stimulus must be identified and learnt whereas

the irrelevant ones must be discarded or ignored [4]. Although some categories may naturally have

physical properties such that members of different categories do not overlap and members of the

same category are similar enough to be immediately recognized as such, this is not the case for all

categories [4]. Often, stimuli that ought to be treated as being of the same type are not superficially

similar enough for this behavior to be immediate or, furthermore, stimuli that ought to be treated

differently overlap. CP’s function becomes evident here as it is known to underlie transformations

of relatively linear sensory signals into relatively non-linear representations [5]. Through CP, our

nervous systems learn to place sensory information into different categories by warping perception

in accord with the perceptual features that are relevant to categorization [6]. It is important to

note that the CP discussed here occurs at the level of perceptual categories as opposed to semantic

categories (e.g. those defined by abstract relations). Perceptual categories are defined by the per-

ceptual relationships between stimuli that change with respect to the physical properties through

experience[6].

Experimentally, CP is revealed when a subject’s ability to make perceptual discriminations be-

tween stimuli is more accurate when they belong to different categories rather than the same category

[5]. Moreover, these differences in perceptual discrimination may occur regardless of the physical

differences between stimuli. In other words, CP may occur even when the difference (e.g. based

on some physical metric such as wavelength) between stimuli of the same category is the same

as that of stimuli of different categories. Typically, the phenomenon has been described as caus-

ing an expansion of perceived between-category differences and a compression of within-category

differences [4][5]. Participants’ results in experiments provided evidence that, following category

learning, members of the same categories seemed perceptually more alike than before having learnt

the categories whereas members of different categories seemed perceptually more different than be-

fore having learnt the categories. Moreover, it has been shown that changes in the neural correlates

associated with categorization occur as well [7].

The neural mechanisms of the complex interplay evidenced by CP between low-level and high-

level processing remain poorly understood as demonstrated by the numerous theories and models of
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the phenomenon [5]. Understanding how early in the information processing stream the influences

of category learning occur to generate CP is a core question of CP research. There is evidence

for various candidate functional areas being involved in CP. For instance, the prefrontal cortex

of monkeys show strong categorical representations [8], patterns of activity in the inferotemporal

cortex code for different object categories [9] and cells in this area become tuned along characteristic

dimensions [10]. It seems that many sites involved in vision (if not all) from precortical areas through

occipital lobes and to the ventral stream may be involved in CP [5].

Previous studies have attempted to determine the possible neural loci of the CP effect. In one

study, human participants were trained to categorize Gabor patch stimuli (Figure 1) that varied in

spatial phase and their ability to discriminate within and between category difference before and

after training was assessed [11]. It was found that CP was induced by category learning but that

training restricted to a specific orientation did not generalize to variations in the orientation of the

Gabor patch stimuli. According to the authors, this lack of transfer from one orientation to another

was evidence that the perceptual changes resulting from category learning occurred relatively early

in the visual information processing stream. Moreover, it may have resulted as a consequence of

the dynamic interplay between later brain areas involved in category learning and earlier visual

processing areas through feedback mechanisms. This conclusion was based on strong evidence from

neuroscience that orientation response ranges become increasingly large as you move further in the

visual processing hierarchy hence the conclusion that the perceptual changes may have been caused

by changes in the responses of neurons at earlier stages of visual processing with smaller orientation

response ranges. Others have argued that this may as well have been a consequence of higher-order

brain areas making better use of low-level information subsequent to category learning [12].

The human visual system is a highly complex perceptual system that is also involved in cate-

gorization of stimuli. Although a wealth of information has been acquired about its mechanisms,

topology and functions, CP in the human visual system is still not well understood. Computational

modelling is advantageous because it can be systematically manipulated to uncover operational

principles underlying a cognitive and/or neurophysiological phenomenon. Various computational

models of CP in the human visual system have been devised demonstrating that many different ar-

chitectures and computational frameworks can give rise to what has been called synthetic CP [13].

Key properties to consider in order to develop a plausible computational model of categorization

in the human visual system are 1) feature selection through localized receptive fields and 2) cate-
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Figure 1: Spatial phase continuum of stimuli for an orientation of 45◦. The schema indicates the
position of the stimuli in relation to the imposed category boundary and the 3f phase is indicated.
The images were constructed with a fixed f phase Gaussian grating superimposed on varying 3f
phases. During discrimination learning and testing, the pairs of stimuli are presented to either
visual field where the pair consists of the same stimulus to both visual fields, stimuli from the
same category or stimuli from different categories for all possible permutations. Image taken from
Notman et al. (2005)

gorization through a global combination of features. Additionally, biological plausibility, hierarchy

and modularity may also come into play as motivations for developing or choosing one model over

the other.

Casey and Snowden (2012) hypothesized, contrary to the previously mentioned study [11], that

neural feedback to the early visual visual cortex or even precortical areas is not necessary for CP

and that most of the changes that result in CP occur at the later stages. Finding that other models

did not demonstrate the interaction of the different stages of visual processing and task influence,

they devised a modular architecture which they argue is 1) biologically plausible and 2) has the

appropriate properties to demonstrate task influence (e.g. category learning) [6]. The model was

based on previous work by Armony et al. (1995) [14]. The architecture of the computational model

(Figure 2) uses uniform layers of identical, interconnected neurons that learn through Hebbian

learning and competition supported by lateral inhibition [15], effectively training the abstracted

populations of neurons to become sensitive to different overlapping patterns. Crucially, each module

can learn to exhibit appropriate local properties (feature selection) whereas the whole model exhibits
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Figure 2: Schematic of the model of learned categorical perception in human vision . The model
consists of left and right pathways from the visual fields to the last stage of processing. Information
progresses from pre-cortical (PC) modules to early visual cortical (EC) modules and finally to the
ventral visual (VV) modules. A binary category signal is provided to VV depending on category
membership when the model is trained for category learning. Image taken from Casey and Snowden
(2012).

global properties (category learning). The model has been used to make biological processing

predictions which have been later confirmed [16] furthermore contributing to enforcing its biological

plausibility. A key feature of this model, in light of the hypothesis made by the authors of the study

in question, is that its hierarchical and modular nature makes it so that it is possible to explore

whether CP emerges as a result of changes to later stages of visual processing only.

In this paper, I explore the model presented by Casey and Snowden (2012) because 1) I find

their claim to be controversial and 2) I believe that although a category signal to late processing

stages may induce CP without the need for feedback mechanisms to earlier stages, their model does

not convincingly show that this is the case in real brains. Nonetheless, the authors have made an

important and novel contribution to CP research by 1) evaluating whether an abstract, system-level

model of visual processing can sufficiently model early visual analysis such that it exhibits both local

(feature detection) and global behaviour (categorization), 2) whether CP can be induced through

task influence to the later stages of processing and 3) by comparing their results systematically to

behavioural experiments. The authors chose to construct their experiments with the model using

the same experimental framework as Notman et al. (2005) whose hypothesis they sought to refute.
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I first discuss the mathematical framework of the model, implementation details and methodology

(section 2). Later, I proceed to describe the results I obtained with my simulation of the model

(section 3) and show that CP is observed at earlier stages with a category signal. Lastly, I discuss

the results in relation to those obtained by Casey and Snowden (2012) and other findings in the

literature (section 4).

2. The Model

The chosen model architecture has the advantage of being biologically plausible at the population

level yet simple enough to implement and analyze. It affords a systems level interpretation of

visual processing in the human brain through its hierarchical and modular structure. The model

was chosen to explore the influence of category signals at later stages of visual processing and the

ability/sufficiency of such signals to induce CP. The idea of modelling a category signal was taken by

Casey and Snowden (2012) from Armony et al.’s (1995) computational model of fear conditioning

[14]. The response of these modules was modulated through a conditioning signal. In the case

of CP, we can reformulate this signal as a category signal given to latest processing areas. This

feedback mechanism is akin to what has previously been observed between the prefrontal cortex

and inferotemporal cortex of monkeys trained to categorize images of cats and dogs [8]. Next, the

input representation used to train and test the model is discussed.

2.1 Input representation

In the original human study by Notman et al. (2005), human participants were shown eight image

pairs of Gaussian windowed gratings with combined spatial frequencies (f + 3f) to form compound

Gabors varying in the relative spatial phase of the two components (see Figure 1). Two sets of

stimuli with orientations of 45◦and −45◦ respectively were generated. The spatial phase f was set

to 0◦for all stimuli whereas the 3f spatial phase varied systematically from 0◦to 315◦. Within each

set, four Gabors belonged to category A with spatial phases 3fA ∈ {90◦, 135◦, 180◦, 225◦} and four

Gabors belonged to category B with spatial phases 3fB ∈ {90◦, 135◦, 180◦, 225◦}. Participants were

first tested on discrimination ability by being presented image pairs restricted to either orientation

set where they had to make within-category comparisons with six pairs with 3f spatial phases

{90◦/135◦, 135◦/ 180◦, 180◦/225◦, 45◦/0◦, 0◦/135◦, 31◦/270◦} and between-category comparisons

with two pairs of 3f spatial phases {90◦/45◦, 225/270◦}. Following the first phase of the experiment,
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participants were trained to categorize through trial and error with feedback on both sets of images

and were subsequently tested again on their ability to discriminate between-category and within-

category signals.

It would be highly desirable to present the actual images to the model but this would require

extensive preprocessing of the images and is not necessarily pertinent to the questions asked in the

present paper. Consequently, the stimuli were generated similarly to the way in which Casey and

Snowden (2012) originally constructed them. In accord with Notman et al’s (2005) experiment,

the generated stimuli only varied the 3f phase with p ∈ P = {0◦, 45◦, ..., 315◦}. The stimuli

were presented as patterns of phase activity for 3f phases and for completeness, the f phase was

included in the stimuli with a constant value of 0 resulting in 9-dimensional vector representations.

Additionally, the stimuli orientations were restricted to a constant value of So = 45◦.

Consequently, inputs to the model such that,

xpo = e−Λp(p−Sp)2−Λo(o−So)2 (1)

Λp =
− ln 1/2

(λp/2)2
(2)

Λo =
− ln 1/2

(λo/2)2
(3)

where xpo is an input x with spatial phase p ∈ P and o ∈ O = {0◦, 15◦, 30◦, 40◦, 43◦, 45◦, 47◦, 50◦,

60◦, 75◦, 90◦}. For each stimulus of a given spatial phase, the pattern of activity is represented as

a Gaussian centered at the appropriate stimulus phase Sp and with a bandwidth λp = 106◦. This

value was chosen in accord with Casey and Snowden (2012) who argue that this approximately

matches the orientation selectivity of early cortical neurons [6]. The pattern of activity decreases

in strength as the difference in phase increases (e.g. moving away from the mean of the Gaussian)

wrapping around such that a phase of 360◦ is equal to a phase of 0◦ as can be seen in Figure 3.

The values Λp and Λo are chosen so that the associated bandwidth is achieved with the Gaussian

at half the height of the curve [11]. Moreover, o ∈ O are used to extend the experiment and test

for generalization of CP to different orientations from the constant one of 45◦selected for training.

This is to mirror the second experiment carried out by Notman et al (2005) on the subjects that

had previously learnt to categorize the Gabors. In the case of the present computational model,

the Gaussian patterns of activity are extended in the second phase of the simulation during testing.

The patterns are such that for increasing differences between o ∈ O and So = 45◦, maximal activity
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Figure 3: An example of two 9-dimensional stimuli as they were presented to the model. The left
image corresponds to a stimulus with 3f phase at 0◦whereas the one on the right corresponds to
a stimulus with 3f phase at 180◦. These stimuli are abstractions of the Gabor patches described
earlier and represent Gaussian patterns of activity with mean centered at the appropriate stimulus
phase with bandwidth λp = 106◦ to match human data on phase selectivity. The patterns of activity
wrap around such that a stimulus phase of 0◦is equivalent to a stimulus phase of 360◦.

Figure 4: Surface plot showing an example input with a 3f phase of 135◦and stimulus orientation
of 45◦, spanning orientations 0◦to 90◦. The orientation values are meant to introduce orientation
differences with respect to Gaussian patterns of activity centered at 45◦. These stimuli were used
in Casey and Snowden (2012) to test for CP generalization ability of the model as was originally
done in the human experiments. Image taken from Casey and Snowden (2012).

at the center of the Gaussian decreases as well as mean activity, as is illustrated in Figure 4. Lastly,

an orientation bandwidth of λo = 30◦ was chosen for the Gaussian patterns of activity to match

human data [6].

The model was therefore presented with four inputs at any given time. As seen in Figure 2,

the model consists of two processing streams, one for each visual field. As a result, the model is
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presented with a Gaussian pattern of activity representing the Gabors to each visual field as well

as a category input to the latest stage of processing. The category signal is represented as a binary

value such that an input for category A is 0 and one for B is 1 and this signal is only presented

during the category training phase.

2.2 Model architecture and computational aspects

The computational model of visual processing used in this paper was constructed such that it

has three distinct layers or modules (see Figure 2) each representing a neuronal population of the

hierarchy of visual processing in the following order: precortical (PC) processing such as occurs in the

retina and lateral geniculate nucleus (LGN), early visual cortical (EC) processing such as in V1 and

V2 and finally ventral visual (VV) processing such as in the posterior and anterior inferotemporal

cortex. In order to keep the model simple, it is restricted to contralateral unit responses. The

category signal is provided to VV because it it thought that the areas it represents contain neurons

that become tuned along relevant category dimensions [10].

As mentioned previously, the model mirrors the competitive learning architecture previously

developed by Armony et al (1995) where each of the modules represents a single layer of rate coded

neurons fully connected to their respective inputs. Each unit j in each layer of the model integrates

over respective d-dimensional inputs x such that its activation and output are as follows:

uj =

d∑
i=1

xiwij(t) (4)

yj =

 f(uj) if j = argmaxif(ui)

f(uj − µkywin) otherwise
(5)

f(uj) =


1 uj ≥ 1

uj 0 < uj < 1

0 uj ≤ 0

(6)

where yj represents the output of the neurons, uj the integration of inputs in a neuron and f(uj)

the activation of a given neuron. The integration of inputs to the neurons is a weighted sum of

inputs xi using weights wij(t) from input i to neuron j. Weights were randomly initialized for all

iterations of the model using a normal distribution centered at 0 with a standard deviation of 0.5.

The winning neuron ywin = maxif(ui) is selected according to its activation and inhibits all other
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neurons with inhibition rate µk for each module k ∈ {0, 1, 2} where PC is 0, EC is 1 and VV is 2.

The time step t is such that 1 ≤ t ≤ N where N is the number of epochs, a multiple of the number

of inputs presented to the model.

As demonstrated by Equations 4, 5 and 6, the model implemented here displays competition such

that feature detectors are formed. It is a variant of the competitive learning algorithm originally

developed by Rumelhart & Zipser (1986) [15]. At each module, once integration of inputs and

activation is calculated according to Equations 4 and 6, a winner neuron is selected and it suppresses

the outputs of other neurons. This output is then fed to the following layer (for PC and EC).

2.3 Learning in the model

A simple Hebbian learning rule is implemented to achieve competitive learning in each module of

the model as follows:

w′ij(t) =

 wij(t) + ηxiyj if xi > ρx̄

wij(t) otherwise
(7)

x̄ =
1

m

m∑
i=1

xi (8)

wij(t+ 1) =
w′ij(t)∑d
k=1 w

′
kj(t)

(9)

where w′ij(t) represents an intermediate step in which weights are increased by a factor of η, the

learning rate, if they have above average inputs. The threshold for increasing weights is determined

according to x̄ and the factor ρ which controls the threshold above which to increase weights.

Finally, each neuron j’s weights w′ij(t) are normalized by weights w′kj(t) generating the updated

weights wij(t + 1) at time t + 1 (Equation 9). The above learning rule defines a way for units in

the modules to learn the features of the stimuli the model processes. A final component of this

computational learning framework is the influence of the category being learnt during the category

learning phase of the simulation. The category signal in this model is akin to feedback given to

human participants during category learning through trial and error. In order to incorporate this

aspect into the learning process, a category signal is provided to VV (see Figure 2) only during

category learning. The category input weight Wc is fixed to a constant value and is not subject

to learning but nonetheless influences learning through normalization (Equation 9). The category
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signal is 0 at all times except during category learning when the stimulus presented is from category

B and during testing after category learning.

Learning in the model is divided into two phases: pre-training and category training. During the

pre-training phase, the model is not given any category signal while during the category training

phase, the model is given the category signal and weight normalization takes the additional weight

Wc into account.

2.4 CP measure in the model versus in the human study

As was discussed, the present model is meant to mirror experiments conducted by Notman et al.

(2005) with human subjects. In order to measure the CP effect of category learning, discrimination

performance was measured before and after category training by counting the number of Hit and

False Alarm responses to the same-different image task. Hits are measured separately for within

and between category image pairs and counted as H(W ) when a participant correctly identified

the images as belonging to the same category and as H(B) when a participant correctly identified

images as from different categories. A False Alarm is counted as F if the subject identified the

images as being different when they were identical. As in Casey & Snowden (2012), discrimination

performance was calculated as an A′ score [17]. This score is a non-parametric measure of the area

under the single-point Receiver Operating Characteristic (ROC) curve calculated for within and

between category discriminations separately:

A′ =


1
2 if H < F

1
2 + (H−F )(1+H−F )

4H(1−F ) otherwise
(10)

where H is the probability of a Hit (H(W ) or H(B)) and F is the probability of a False Alarm.

In order to obtain A′(W ) and A′(B) in the model for between- and within-category discrimination

respectively, discrimination testing was assessed after the pre-training phase and after the category

training phase. To obtain Hits and False Alarms, the outputs of each pair of modules (one mod-

ule from one hemisphere compared with the corresponding module in the other hemisphere) were

compared after testing on all possible within- and between-category pairings. Outputs of each of

the left and right modules are summed separately to give Y ′ and min-max normalized for each

pair of images presented during the testing to yield Y . The values obtained for the left and right

modules are then compared according to some threshold value δ to determine whether or not they
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are different according to the following:

Y ′ =

m∑
i=1

yi (11)

Y =
Y ′ −mini(yi)

maxi(yi)−mini(yi)
(12)

|Yleft − Yright| > δ (13)

The model was simulated and implemented using Python in a Jupyter Notebook. The main

librairies used were the following: Scipy, Numpy, Sklearn and Matplotlib. The code for the

simulation is available on GitHub

3. Simulation and Results

In this section, experimental procedures for the computational model are discussed. The aim here

was both to model the experiments in human studies as well as attempt to replicate the findings

of Casey and Snowden (2005). As mentioned in Section 2.3, the model’s testing is divided into two

phases for a single orientation. In the first phase (pre-training), stimuli are presented to the model

without a category signal to VV. Discrimination performance is subsequently tested (as described

in Section 2.4). In the second phase (category training), stimuli are presented to the model with

the category signal and discrimination performance is tested again subsequently.

3.1 Simulation phases and model parameters

In the pre-training phase, the model is presented with the stimuli in order to achieve a stable model

before category training. The training set chosen for this phase is the set of all possible stimuli.

This choice is made in order to train each module in the model to be capable of discrimination of

stimuli with different phases. At each epoch, all eight phase inputs are presented in random order

to either visual field which is also chosen at random. The visual field not chosen for a given epoch

receives the zero vector as input to ensure that the model can discriminate between an input and

no input. An example of responses from the left PC of a model before and after pre-training can

be seen in Figure 5.

The category training phase of the experiment consisted of blocks of double training and single

training. During double training, stimuli pairs from the set of permutations of within-category

stimuli (twelve in total for each category) and between-category stimuli (thirty-two in total) were

https://github.com/AlephG/cp-human-vision
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presented in random order to the left and right visual fields. During single training, the model was

presented with each of the eight phase inputs in random order to a randomly chosen visual field while

the other visual field received the zero-vector input representing no stimulus. One category training

epoch consisted of fifty-six double and three times eight single inputs chosen in random order for

a total of eighty pairs of images per epoch. The model was trained for thirty pre-training epochs

and then sixteen category training epochs. Details of the parameters used are outlined in Table 1.

Both simulation phases were restricted to training with a single stimulus orientation So = 45◦.

Figure 5: Neuron activity in the left PC module of example model with 7 units for random weights
and after 20 epochs of pre-training. The response of each neuron is shown for all 3f phases tested.
As can be seen, structure (e.g. feature detectors) emerges within the PC module early during
training due to the competitive learning algorithm that the model implements.

It should be noted that the the original parameters used by Casey and Snowden (2005) in their

model were not all set to identical values in the model presented here for reasons that will become

obvious in Section 3.2.

3.2 Acquired CP in the model

One hundred models were trained and tested for CP using the parameters outlined in Table 1.

All the models were randomly assigned different weights at time t = 1 using the method describe

in Section 2.2. The model first underwent the pre-training phase which was then followed by the

category training phase. Examples of neuron activity in VV before and after pre-training as well

as after category training is illustrated in Figure 7. Strong categorical activity was observed in

the VV module following category learning. Discrimination testing matched that of the original

model and in fact outperformed it due to some minor adjustments. The learning rate and number
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Parameter Value

Neurons per module
MPC 7
MEC 7
MV V 7

Inhibition rate
µPC 0.6
µEC 0.4
µV V 0.2

Category input
fixed weight

Wc 0.4

Learning rate η 0.01
Pre-training

epochs
Np 30

Category
training epochs

Nc 16

Weight change
threshold

ρ 1

Difference
threshold

δ 0.2

Table 1: The parameters used for the experiments carried out with every iteration of the model.

of epochs for pre-training in the original model were found to be unnecessarily large. The model

clearly converged to feature detectors as early as the first few epochs (see Figure 5). This may

have been caused by a minor difference in the stimulus presentation scheme. Here, the whole set of

possible permutations of stimuli for within and between categories were presented whereas in the

original experiment, within and between comparisons were chosen so as to lie on what was termed

a ”circular” continuum [6]. The training sets in the original studies were considerably smaller as a

result (see Section 2.1).

Discrimination performance was assessed using the methods and equations described earlier (Sec-

tion 2.4). As predicted by the authors of the original paper, a CP effect was observed in the VV

following category training. A′(W )before = 0.67 and A′(B)before = 0.68 values were assessed before

category training and A′(W )after = 0.51 and A′(B)after = 1.0 were assessed after category train-

ing. These results demonstrate that the CP effect is indeed observed in later processing stages

through a category signal. The CP signature is demonstrated here by three key changes in mean

A′ score values. Firstly, the low mean A′ score before category training for both within- and

between-category discrimination indicates that strong category representations had not been learnt

yet since discrimination ability was not very high and very similar for both within- and between-

category discriminations. Secondly, the drastic increase in the mean A′ score for between-category
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Figure 6: Neuron responses in the VV module for an example model. Responses are shown before
any training (e.g. random weights), after pre-training and after category training. The bottom left
image clearly demonstrates the CP effect and the learnt categorical representations in VV induced
as a result of the feedback category signal.

discrimination indicates that following category learning, the models learnt strong categorical repre-

sentations resulting in robust differences in activity for members of category A and B. This is akin

to results in humans where members of different categories become more perceptually dissimilar

after category learning (e.g. acquired distinctiveness). Lastly, the decrease of the mean A′ score

for within-category discrimination to barely above chance level indicates that similar activity pat-

terns were learnt for members of the same category resulting in strong categorical representations

as opposed to individual representations for each member (e.g. acquired equivalence). These results

mirror the usual results in CP research both in humans and computational models. Independent

samples t-tests showed that the differences in mean A′ scores before and after for all modules were

significantly different (p < 0.0000001). Although significant differences were obtained for the EC

and PC modules as well, these results do not support the claim that CP was induced in those

modules since they lack the key properties mentioned above for VV. Figure 7 illustrates the changes

induced by category training to the VV module of the models trained.



16 Categorical Perception in the Human Visual System

The analysis described here demonstrates that it is possible to induce CP computationally

through a feedback category signal provided to the VV module, the latest processing stage in the

model. The VV module exhibits both a decrease in discrimination performance for Gabor patterns

of activity of the same category and an increase in discrimination performance for the stimuli of

different categories. This effect is only seen in VV whereas in other modules there is only an increase

in discrimination performance for both within and between category comparisons. As claimed by

Casey and Snowden (2012), CP feedback mechanisms need not be extended further to earlier stages

of processing in order to obtain a CP effect. Nonetheless, the model lacks any feedback mechanisms

from later stages to earlier stages and so may not be fit to demonstrate that such mechanisms are

not present in real brains and that they do not indeed induce CP to earlier stages as well. In order to

test what the influence of the PC and EC is on the results discussed here, Casey and Snowden (2012)

interchanged the PC and EC weights following pre-training and found that this did not change the

strength of the observed CP effect in the VV module [6] which was confirmed in my simulation as

well. Furthermore, they note that no CP effect is observed in VV prior to category learning which

they argue may indicate that the VV module learns to use the encoded phase selective outputs from

the PC and EC modules that arise as a result of pre-training.

Although these results indicate a potential for the existence of the computational architecture of

this model in real brains, whether a category input to earlier modules would induce CP was tested

and results confirmed that this was the case. Fifty iterations of the model were pre-trained without

a category signal and then tested with the category signal to EC. When provided with the category

signal to EC, similar patterns of activation were found as is seen in VV (see Figure 7). This indicates

that the category signal biases the response of a module without any prior learning of categorical

information and that the potential for a feedback mechanism to earlier stages is a possibility for

the CP effect. These results support the hypotheses of other researchers who tested models that

had both feed-forward and feedback mechanisms and observed CP at each level of processing [18].

Furthermore, this may provide evidence to refute the claim of Casey and Snowden (2012) that the

VV module is using the category signal and encoded phase selective inputs from prior processing

stages to effectively learn categorical representations removing the need for such representations at

earlier stages of processing.

Fifty iterations of the computational model with random weight initialization were also tested

for orientation generalization following the methods described in Section 2.1. The models were
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Figure 7: Mean A′(W )before , A′(W )after , A′(B)before and A′(B)after scores for each module. The
CP effect is clearly seen in the bottom left figure representing discrimination performance in the
VV module before and after category learning for within and between category discrimination.

trained using the same parameters as outlined in 1 while varying orientations. Mean A′(W )diff =

A′(W )after − A′(W )
before

and mean A′(B)diff = A′(B)after − A′(B)
before

were calculated for the VV

module to investigate whether the CP effects generalized to these other orientations o ∈ O =

{0◦, 15◦, 30◦, 40◦, 43◦, 45◦, 47◦, 50◦, 60◦, 75◦, 90◦}. It was found that the computational model gen-

eralized relatively well to most orientations (e.g. from 15◦to 75◦) but that a sharp decline in the

mean difference between before and after category training discrimination performance occurred for

other more extreme values (Figure 8). Additionally, the CP effect is slightly higher for immediate

neighbouring orientation values surrounding the single orientation value for which the model was

trained. This can be solved by decreasing the difference threshold to δ = 0.01 as was done by Casey

and Snowden (2012). The results obtained here do not predict human results as it was found that

humans could not generalize well to these other orientation values after having learnt to categorize

stimuli restricted to an orientation of 45◦, supporting Notman et al’s (2005) conclusion that CP

effects occur in the earlier stages of visual processing [11]. In fact, the results of Notman et al (2005)

showed that the CP effect was specific to orientations in a range of 6.5◦surrounding the orientation
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of 45◦used for training. Casey and Snowden (2012) obtained similar results to the ones discussed

here in their analysis [6].

Figure 8: Mean A′(W )before , A′(W )after , A′(B)before and A′(B)after scores for each module. The
CP effect is clearly seen in the bottom left figure representing discrimination performance in the
VV module before and after category learning for within and between category discrimination.

4. Discussion

Various models of categorical perception have been devised ranging from many connectionist neural

network models [13] [18] [20] [21] [22] to biophysical models [3] and even a dynamical systems model

[19]. The simple connectionist feedforward model presented here has the advantage of being simple

to analyze while maintaining the abstract properties of biological brains through its competitive

learning architecture. Moreover, it demonstrates hierarchical processing and modularity, both key

properties of biological brains. The model exhibits local properties in each module or layer (feature

detection) and global properties as a system (category learning). In Casey and Snowden’s (2012)

view, this model was a first step in demonstrating that CP was possible without the need for

elaborate feedback mechanisms to earlier stages of sensory processing. Indeed, through a category

signal to the VV module, it was shown that the CP effect can occur within that module only

and that it is capable of using the encoded sensory information from earlier stages to display

categorical activity. At the neuronal level, units respond with similar activity when the model

is presented with stimuli that belong to the same category whereas there is a sharp difference in

response when it is presented with stimuli from different categories. This phenomenon is grounded

in biological evidence as has been supported by recent neurophysiological studies. As an important
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step towards elucidating the neural mechanisms of CP effect, the neural basis of categorization

has been increasingly researched. Several studies have shown that category learning modifies the

individual neuronal properties of the inferotemporal cortex [10] [23] and other studies of visual

categorization in non-human primates suggest that changes in neural representations due to category

learning occur in higher-order visual areas and higher association cortex but not earlier sensory

cortex [9]. However, other studies in humans and rodents point towards a plausible alternative to

this view: that category biasing during categorization tasks can occur in signals in earlier visual and

auditory cortices [24] [25]. As has been shown computationally in the present simulation, a category

signal, potentially being fed back from later processing stages, may also induce the CP effect on

earlier populations of neurons. The advantage therefore of the present model is that it provides

computational evidence for the plausibility of multiple downstream effects of category learning

through feedback. More recent work in computational modelling from Freedman et al. (2020) has

shown through a biophysical model of top-down signalling grounded in neurophysiological evidence

that a CP effect may emerge as a result of integration of feedforward and feedback signals in

an association area[3]. This association area is thought to be implicated in improving perceptual

stability in noisy environments thereby demonstrating a novel functional role for CP. In their model,

sensory encoding change would eventually manifest itself to all stages in the downstream information

processing [3].

Although the model discussed in this paper broadly provides computational evidence for potential

mechanisms of CP in real brains, it is limited in several ways. Firstly, the model is quite simplistic

since it is an abstraction of extremely complex neural processes. The hierarchy introduced is arbi-

trarily defined to represent vaguely the different levels of processing that occur in the human visual

processing stream. Although it was shown that the computational simulation discussed here broadly

maps to human data, it is also sensitive to initial parameters such as the number of training epochs,

learning rate and a variety of other parameters not discussed extensively here. Nonetheless, the

model may potentially make predictions about complex neurophysiological processes, namely that

CP might occur, at least sometimes, without the need for feedback mechanisms to early perceptual

processing stages. Compared to biophysical models, the present model, although biologically plau-

sible at a systems level, lacks key neurophysiological properties. Other models such as Freedman

et al’s (2020) neural circuit of top-down signalling much more closely match biological reality but

have the disadvantage of being more complex to analyze and simulate. Secondly, the model does
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not mirror the orientation selectivity that occurs in humans when they are trained to do the task

explored in this paper. This may indicate the need for at least some feedback mechanisms that,

although not inducing CP, could enable this specificity of category learning in humans [26]. Lastly,

an important weakness of the model is that, as discussed in Section 3.2, it seems that CP-like ef-

fects (e.g. activity-wise) can be induced whenever any given module is given the category signal,

with or without category training. It seems therefore that the results may have been biased by the

way in which the category signal was defined. Further investigation into the learning aspect of the

category signal and perhaps a higher-order learning module representing areas like the prefrontal

cortex would be necessary.

5. Conclusion

In this paper, a computational model of categorical perception in human vision is explored. The

simulations carried out support prior explorations of the model by replicating findings that category

learning can be restricted to an influence on later stages of processing and still generate a CP effect.

These findings are based on a broadly biologically inspired model that exhibits local properties,

hierarchy and global properties. Furthermore, alternative simulations to the ones carried out by

Casey and Snowden (2012) were carried out in this paper. These experiments provided support for

a category signal potentially inducing CP at any stage of processing. Although this claim is not

aiming to specifically argue for an alternative biological process, it demonstrates that this model

may be limited in its ability to support the inferences it was used to make. Lastly, the model fails

to map to human data on the specificity of the CP effect. Contrary to those results, the model

generalizes well to other orientations.

References

[1] Harnad, S. (2017). To Cognize is to Categorize. In Handbook of Categorization in Cognitive Science
(pp. 21–54). Elsevier. https://doi.org/10.1016/B978-0-08-101107-2.00002-6

[2] Neitz, J., Neitz, M. (2017). Evolution of the circuitry for conscious color vision in primates.Eye, 31(2),
286–300. https://doi.org/10.1038/eye.2016.257

[3] Min, B., Bliss, D. P., Sarma, A., Freedman, D. J., Wang, X.-J. (2020). A neural circuit mechanism
of categorical perception: Top-down signaling in the primate cortex [Preprint]. Neuroscience. https:
//doi.org/10.1101/2020.06.15.151506

[4] Harnad, S. (1987). Categorical perception: the groundwork of cognition. Cambridge, UK: Cambridge
University Press.

https://doi.org/10.1016/B978-0-08-101107-2.00002-6
https://doi.org/10.1038/eye.2016.257
https://doi.org/10.1101/2020.06.15.151506
https://doi.org/10.1101/2020.06.15.151506


21

[5] Goldstone, R. L., Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Reviews:
Cognitive Science, 1(1), 69–78. https://doi.org/10.1002/wcs.26

[6] Casey, M. C., Sowden, P. T. (2012). Modeling learned categorical perception in human vision. Neural
Networks, 33, 114–126. https://doi.org/10.1016/j.neunet.2012.05.001
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