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Abstract 
  

 Categorization is a fundamental cognitive ability both for humans and other 
animals. Characterizing and quantifying the degree of difficulty of category learning is 
important to understanding how the brain categorizes. It is known that different 
categories are learned with varying degrees of difficulty. The present paper seeks to 
elucidate, using a neural net model of experimental outcomes in categorization tasks, (1) 
what makes some categories more difficult to learn than others and (2) how does task 
difficulty relate to categorical perception (CP), the phenomenon in which the internal 
representation of similarities is modified by category learning such that inputs belonging 
to different categories come to be perceived as more different after the category is 
learned and inputs belonging to the same category come to be perceived as more similar. 
Four parameters are defined in this paper to control and evaluate category learning 
difficulty. We show how these parameters relate to category-learning difficulty and in 
turn provide clues as to how category-learning difficulty may be related to CP.   
 
Keywords: categorization, complexity, categorical perception, neural net. 

Introduction 
 

A key property of the human brain is its ability to make sense of inputs from an 
otherwise noisy and chaotic world. One of the fundamental mechanisms underlying this 
ability is categorization. The categories that an organism recognizes guide its behavior 
such that it behaves differently towards different kinds of objects and events (e.g., 
approaching, avoiding, eating, manipulating, and, in the case of humans, naming and 
describing). Categorization is the process by which living organisms learn to do the right 
thing with the right kind of thing (Harnad, 2017). In this general sense, categorization 
underlies much of cognition. It underlies the capacity of living organisms to deal 
adaptively with the vast variation in their world. Through categorization, continuous 
analog sensory perception becomes discrete symbolic processing. Identifying the 
members of a category to which a stimulus belongs is based on detecting the features 
that distinguish it from members of other categories.  

 
Although there are well-studied examples of innate categories in the scientific 

literature, (e.g., in color perception; Neitz & Neitz, 2017), most categories are not inborn 
but learned and acquired throughout a lifetime. An organism’s categories depend on their 
sensorimotor affordances (Gibson, 2014) — the possible interactions that the features of 
an object “afford” (allow) given the structure of the object and the sensorimotor and 
somatic structure of the organism. For example, a keyboard affords typing to an organism 
with hands but not to one with hooves. Identifying relevant features and discarding or 
ignoring irrelevant ones, a process called feature detection, allows an organism to learn 
categories. Learning to categorize can occur through two types of learning: 
“unsupervised” and “supervised”. 



 

Unsupervised learning is a passive form of learning: the intrinsic structure of a sample 
of stimuli is learned by detecting statistical regularities such as feature frequencies or 
correlations. In supervised (or reinforcement) learning an organism or algorithm responds 
to inputs and is provided with corrective feedback signaling whether the response was 
right or wrong. This feedback can come from the environment, a teacher, an error signal, 
a reinforcement signal, etc. Through supervised learning, an organism learns to assign 
stimuli to distinct categories as a result of the corrective feedback so it eventually stops 
making errors (if the categories are learnable). 
 

Learning categories is the process through which the features that distinguish the 
categories are detected, allowing the learning system to identify which inputs are 
members and which are not. Of all the features of inputs, only the subset of them that is 
relevant for distinguishing members from non-members needs to be detected. This 
subset of features is called the category-covariant subset and it can generally be described 
as a Boolean rule that defines the possible combinations of a category’s covariant 
features. The rule defines one composite feature. The rest of the features of a stimulus 
can be ignored.  

 
Some categories are inherently more difficult to learn than others: what is it that 

makes them more difficult? A stimulus space can be partitioned in many ways into many 
different categories. Our working assumption is that properties of the structure of a 
stimulus space together with the complexity of the Boolean rule on the category-
covariant features that can partition the space into categories will predict how difficult it 
will be to learn the partition.  

 
Various complexity measures for category learning have been proposed. Most are 

restricted to what are known as explicit rule-based1 category-learning tasks. In such tasks, 
category learning difficulty has been shown to be predicted by the complexity of the rule 
that describes the categories verbally (Feldman, 2000; Pape et al., 2015; Vigo, 2009). The 
complexity of these explicit verbal (or symbolic) rules has been evaluated using methods 
derived from Boolean algebra, computational models and information theory. There are 
two differences between learning categories based on explicit rules that describe their 
distinguishing features verbally using already known and named features and the learning 
studied in the present paper:  

 
(1) The features for distinguishing categories in our model do not already have 

names and would hence be difficult to describe explicitly in words: The rules are 
nonverbal, hence implicit rather than explicit. The feature learning is hence more 
directly sensory rather than verbal in our model.   

 
1 An example of an explicit verbal or symbolic category rule: an object is an A if it has features 𝑎1 and 𝑎2 
and it is a B if it has features 𝑏1 and 𝑏2. 



(2) We are interested not only in category learning but also in changes in category 
perception induced by learning. In our model, these take the form of changes in 
the distances between categories in an internal similarity space generated by 
changes in the weights on sensory feature detectors: As category-distinguishing 
features are detected and their weights increase, members of different 
categories become more separated in similarity space and members of the same 
category become more compressed. 

 
We think most categories that living organisms learn are based on learned 

perceptual differentiation of this kind. Categorization based on explicit verbal rules, 
because it requires language, is a special case that is unique to human category-learning. 
We are accordingly seeking a measure of the difficulty of category learning that is agnostic 
about whether the rules underlying the features that distinguish categories are verbalized 
explicitly or are simply implicit in sensory feature detection. 

 
In human experiments it has been found that under certain conditions category 

learning induces perceptual changes such that after learning, people perceive the 
members of different categories as looking (or sounding) more different from one 
another, and members of the same categories as more similar to one another (Harnad, 
2003; Notman et al., 2005; Goldstone & Hendrickson, 2010; Pérez-Gay et al., 2017).  This 
phenomenon, called learned categorical perception (CP), seems to reflect subtle 
perceptual changes that organisms undergo in learning to categorize. 

 
Through CP, organisms as well as machine learning algorithms (Bonnasse-Gahot & 

Nadal, 2020; Damper & Harnad, 2000) learn to assign inputs to different categories by 
altering perception to detect and highlight sensory features that differentiate the 
categories. A question naturally arises about the relation between this modification of 
similarity space and how difficult it is to learn a category. If what must be learned are the 
perceptual features that distinguish members of different categories, what makes 
categories easier or harder to learn? Our hypothesis is that learning difficulty is 
proportional to how much the internal representations of inputs in similarity space need 



to be modified (i.e., separated/compressed, as in learned CP) for error-free 
categorization. 

 

In the next section we present a framework for quantifying category-learning 
difficulty that provides correlates and predictors of category-learning difficulty and 
relates CP and category-learning difficulty using algorithmically generated formal stimuli 
in a neural net model proposed by Thériault et al. (2018). 

Methods 
 

Previous experiments 
 

It has been shown using algorithmically generated texture-like images that (1) 
human subjects could learn to identify them as members of one or the other of two 
categories, A and A’, based on their distinguishing features with an accuracy of at least 
80% and (2) that successful learning resulted in CP effects - between-category separation 
and within-category compression in pairwise dissimilarity (distance) judgments.  
 

 

Figure 1. Human experimental data showing how pairwise 
stimulus dissimilarity judgments changed from before to after 
successfully learning the category through trial and error 
training with corrective feedback (adapted from Pérez-Gay et 
al. 2019). 

Figure 2. An example of 6 binary pairs of visual 
microfeatures (upper and lower are mutually exclusive 
pairs) used to construct the texture stimuli in the 
experiments conducted by Pérez-Gay et al. (2019).  



Membership in the two mutually exclusive categories 𝐴 and 𝐴’ were based on the 
presence of binary microfeatures, randomly distributed in each texture. The mutually 
exclusive binary pairs of microfeatures for each 𝐴 and 𝐴’ came from one of three sets: 𝐴𝑘, 
𝐴′𝑘  or 𝐼𝑁−𝑘 where 𝐴𝑘and 𝐴′𝑘  are the sets of 𝑘 paired category-relevant microfeatures of 
category 𝐴 and 𝐴′ respectively and 𝐼𝑁−𝑘 is the set of 𝑁 − 𝑘 category-irrelevant 
microfeatures (noise). Relevant microfeatures are defined as those that covary with 
category membership meaning that all of the 𝑘 category-relevant microfeatures from 
each respective set must be present in each A or A’ texture. Irrelevant features are just 
those that are uncorrelated with category membership and hence provide no information 
to the learner. The rule that determined category membership of the images was 
conjunctive: the presence of the 𝑘 covariant features of 𝐴𝑘  and 𝐴′𝑘  for members 𝐴 and 
𝐴′ respectively where 𝐴𝑘 ∩ 𝐴′𝑘 = ∅.  
 

In the experiments of Pérez-Gay Juárez et al. (2019) participants were first exposed 
to the stimuli through a pairwise (dis)similarity rating task. If any learning occurred during 
this task, it was unsupervised.  Next the participants underwent 400 training trials of 
supervised learning in which at every presentation of a stimulus they were required to 
indicate what category it belonged to; they were then immediately given feedback on 
whether their response was correct or incorrect. The a-priori levels of difficulty were 

defined as 
𝑘

𝑁
, the proportion of covariant features relative to the total number of features 

of each category. The assumption behind this measure of difficulty was that stimuli with 

a ratio 
𝑘

𝑁
= 1 would be the easiest to categorize since all features in such stimuli are 

relevant to categorization and 𝐼𝑁−𝑘 =  ∅ meaning that there is no noise. Conversely, as 
𝑘

𝑁
 

decreases, the number of irrelevant features increases while the number of relevant 
features decreases, leading to a more difficult categorization task. It was observed that 
with 𝑁 = 6 and 3 ≤ 𝑘 ≤ 6 as 𝑘 decreased, the difficulty of the categorization task 
increased, as indicated by the fact that the number of trials required to learn successfully 
increased and the number of participants that succeeded in learning with an accuracy of 
80% or more decreased. Neural network simulations with unsupervised and supervised 

learning also showed that the 
𝑘

𝑁
 ratio was a determining factor in category learning 

difficulty for conjunctive categories. 
 

The neural net model 
 

Figure 3. An example of a stimulus fed to the neural nets in our 
experiments. Each microfeature was a binary vector of length 8. Each 
stimulus of length 256 contains 32 such microfeatures. 



In the present paper, the categorization task was modelled using a general deep 
neural network (LeCun et al., 2015), inspired by previous simpler models (Harnad et al., 
1995; Greco et al., 1997; Damper & Harnad, 2000) and more recent developments in 
categorization and categorical perception research (Pérez-Gay Juárez et al., 2019; 
Thériault et al., 2018). Neural nets can be thought of as idealized feature learners that can 
categorize inputs by detecting and weighting their features. To match human 
categorization tasks, the neural net architecture used in the present paper consists of a 
denoising autoencoder (Vincent et al., 2008) that feeds into a supervised classification 
layer (Thériault et al., 2018). The denoising autoencoder learns through auto-association 
to generate the inputs it receives during training from compressed and perturbed 
representations. To do so, the network is forced to learn relevant features that will allow 
it to reconstruct the denoised representation from the perturbed inputs it is fed. This 
portion of the model stands in for the pairwise similarity ratings of human participants 
before category learning. Once the autoencoder has learned the appropriate 
representation space, the internal representations of the autoencoder are then fed to the 
rest of the net so that it learns the category labels through supervised learning. During 
this portion of the training, the net learns the categories through error-corrective 
feedback in the form of gradient descent backpropagation based on the difference 
between the output of the net and the correct category label. This results in the learning 
of the appropriate feature and weightings, leading to successful categorization of the 
stimuli after enough trials. More details on the technical aspects of the implementation 
of the neural net model are provided in the Appendix. 

 

The stimuli 
 
The stimuli used in our experiments consisted of binary vectors 𝒙 ∈ {0,1}𝑁 where 

𝑁 = 256. They were constructed using randomly generated sets of binary microfeatures 
𝑼𝑴 = {𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑙} where 𝑴 =  8 is the length of the binary vector representing 
each microfeature and 𝒍 =  32 is the total number of microfeatures for a given set of 
mutually exclusive categories 𝑨 and 𝑩. In total, 384 sets 𝑼𝑴 were randomly generated. 
For each category a set 𝑼𝑴 was chosen at random and from it three mutually exclusive 
subsets 𝑴𝑨,  𝑴𝑩 and 𝒁 were randomly generated where 𝑴𝑨 is the set of relevant 
microfeatures for category 𝑨, 𝑴𝑩 is the set of relevant features for category 𝑴𝑩  and 𝒁 
is the set of irrelevant microfeatures. For each category, 𝑴𝑨  ∩   𝑴𝑩 = ∅ and 
|𝑴𝑨| = |𝑴𝑩| = 𝒌. Unlike in the case of the textures, the distribution of the microfeatures 
was parameterized and varied across categories as explained in detail below. Four 
parameters were used to control a-priori category-learning difficulty: 𝒌, 𝒅, 𝒑𝒅 and 𝒑𝒏𝒐𝒊𝒔𝒆. 
Following is an account of each parameter, its role and hypotheses related to it. 

 

Covariant microfeatures (𝒌) 
 

 For each category, 𝑨 and 𝑩, the number of covariant microfeatures (𝒌) varied 
from one to twelve. At minimum, at least one of the twelve binary microfeatures covaried 



with category membership and the rest were category-irrelevant. At maximum, all twelve 
microfeatures covaried with category membership. Naturalistic categories have 
potentially an infinite number of features from which a subset is relevant to 
categorization. Sometimes, very few features are relevant to whether something belongs 
to a category, other times many features in combination or alone are relevant. It is 
hypothesized that on average across other parameters, it should be easier to categorize 
as 𝒌 increases (as suggested by the results of human experiments). Given higher values 
of 𝒌 and a finite number of features, less of the input is noise and as a result it is easier to 
determine which stimulus belongs to what category. It is important to note that higher 
values of 𝒌 in a finite space also imply a reduction in within-category variance because of 
the lower proportion of possible irrelevant features in the stimuli.  
 

The number of covariant locations (𝒅) 
 

 Features cannot always occur at every location on an object, as in our textures 
with spatially distributed microfeatures. Sometimes the location at which a feature occurs 
is also relevant. For example, consider an object that has something that looks like a nose, 
two eyes and a mouth but for some reason they are all over the place. This object is 
unlikely to be categorized as a face, even though it has some of the relevant features of 
faces. One of the features is missing: that the nose, eyes, and mouth be positioned 
correctly. As a result, we choose 𝒅 locations where relevant information is to be found 
and hypothesize that as 𝒅 grows, categorization becomes easier because most of the 
stimulus contains relevant information. Note that this is like the 𝒌 parameter with respect 
to the decrease in within-category variance: as 𝒅 increases, more of the stimulus contains 
relevant information (e.g., covariant features). For our experiments, 𝑑 ∈ {2, 4, 6, … , 28}. 
 

The invariance distribution parameter (𝐩𝐝) 
 

 At any one of 𝒅 locations, the parameter 𝒑𝒅 determines which covariant feature 
can occur there. When learning to categorize, the learner is effectively learning the 
within-category invariance. The rule that defines a category also defines the what 
invariance the learner must detect for error-free categorization. The rule can define the 
location of relevant features (as the parameter 𝒅 does) or what the relevant features are 
(as the parameter k does). The parameter 𝒑𝒅 defines the aspect of category rules that 
determines how the relevant features are distributed at the relevant locations. At one 
end of the invariance spectrum, there is spatial or local invariance where 𝒑𝒅 =  1. This 
condition implies that in all stimuli of a given category, the same 𝒌 covariant 
microfeature(s) occur at the same 𝒅 locations. In these categories, the rule that must be 
learned can be thought of as a conjunction of the 𝒌 covariant microfeatures over the 𝒅 
locations. The within-category invariance in this case is just that any member of the 
category can only have one of the 𝒌 covariant microfeatures at each of the d locations 
(e.g., each relevant feature 𝑘𝑖  always occurs at some location 𝑑𝑙 for all members of the 
category). In contrast, distributed invariance, where 𝒑𝒅 =  12, is the condition in which 
any of 𝒌 covariant microfeatures can occur at any of 𝒅 locations. The rule for these 



categories can be thought of as a disjunction of the 𝒌 covariant microfeatures over the 𝒅 
locations. Here the within-category invariance is that any member of the category can 
have any of the 𝒌 covariant features at any of its 𝒅 locations. It is hypothesized that as 
invariance tends towards maximal distribution, categorization difficulty increases 
because within-category variance also increases (e.g., the number of possible 
combinations of relevant microfeatures that fall under the category rule increases). For 
our experiments, 1 ≤  𝐩𝐝 ≤ 12  and 𝐩𝐝 ≤ 𝐤. 
 

The noise parameter (𝒑𝒏𝒐𝒊𝒔𝒆) 
 

The noise parameter allows us to perturb categories by controlling how certain 
the occurrence of any of the 𝒌 microfeatures at any of the 𝒅 locations is. The higher its 
value, the more uncertainty is introduced in the category. This just means that the 
parameter allows us to introduce randomness in the stimuli. Consequently, it is 
hypothesized that as 𝒑𝒏𝒐𝒊𝒔𝒆 increases, so does category-learning difficulty. For our 
experiments, 0 ≤  𝒑𝒏𝒐𝒊𝒔𝒆 ≤ 0.4  . 
 

The simulations 
 

 In total, 4368 simulations were conducted with different categories with all 
possible combinations of the four parameters 𝒌, 𝒅, 𝒑𝒅, 𝒑𝒏𝒐𝒊𝒔𝒆 within the constraints 
described above. The hyper-parameters of the neural net (see Appendix) were kept 
constant. Every neural net was trained for a set number of 30 epochs and with category 
samples of size 2048. Category-learning difficulty was measured using the minimal loss 
achieved by the neural net after supervised learning, which amounts to considering how 
closely the neural net’s outputs matched the correct outputs on average after a set 
number of training epochs. As such, minimal loss achieved is proportional to category-
learning difficulty. We consider this measure to be more informative than classification 
accuracy since it is possible for a neural net to categorize correctly without having fully or 
sufficiently minimized its loss function. 

Results 
 

 In our statistical analyses, all four parameters were evaluated independently as 
predictors of category learning difficulty or minimum loss achieved by the neural net. 
Moreover, parameters 𝒌, 𝒅 and 𝒑𝒅 were evaluated as predictors of global CP scores. 
Global CP is a measure of CP that accounts for both between-category separation and 
within-category compression by subtracting the former to the latter (see Appendix). It 
was found overall that there was a strong correlation between learning difficulty and 
global CP scores after learning (see Figure 4), 𝑟(4366) =  −.81, 𝑝 < .001, 𝑑 = 1.24. The 
effect size for this analysis (𝑑 = 1.24) was found to exceed Cohen’s (1988) convention for 
a large effect (𝑑 = .80). 



 

Number of covariant microfeatures (𝒌) as a predictor of category learning 
difficulty and CP 
 

We first analyzed the correlation between the number of covariant microfeatures 
(𝒌) and category learning difficulty for categories with local invariants and categories with 
distributed invariants. A strong negative correlation was observed for averaged category 
learning difficulty as a function of the number of covariant microfeatures (𝒌) for 
categories with local invariants (see Figure 5), 𝑟(10) =  −.77, 𝑝 = .004. In contrast, a 
strong positive correlation was observed for averaged category learning difficulty as a 
function of number of covariant microfeatures (𝒌) for categories with distributed 
invariants where 𝒌 >  1 and 𝒌 =  𝒑𝒅  (see Figure 6), 𝑟(10) = .73, 𝑝 = .01 . We also 
analyzed the correlation between learning difficulty and the number of covariant 
microfeatures (𝒌) for data points grouped by the number of covariant microfeatures and 
averaged across all other parameters: this yielded a strong positive correlation (see Figure 

Figure 5. A negative trend is observed for minimum loss as a 
function of the number of covariant microfeatures for 
categories with local invariants. 

Figure 4. The general trend of the correlation between global CP scores 
and category-learning difficulty is illustrated here.   



7), 𝑟(10) = .72, 𝑝 = .008. Last, the correlation between category-learning difficulty and 
global CP scores averaged across all parameters for data points grouped by the number 
of covariant features (𝒌) was strongly negative (see Figure 8), 𝑟(10) = −.91, 𝑝 < .001. 

 
 

Invariance distribution (𝒑𝒅) as a predictor of category learning difficulty and CP 
 

Next, the correlation between category-learning difficulty and invariance 

distribution (𝒑𝒅) was evaluated. A strong positive correlation was observed for category-
learning difficulty averaged across all other parameters for data points grouped by 
invariance distribution parameter value (𝒑𝒅) (see Figure 9), 𝑟(10) = .85, 𝑝 < .001. 
Additionally, a strong negative correlation was observed between average global CP 
scores across all parameters for data points grouped by invariance distribution (𝒑𝒅) and 
invariance distribution parameter (𝒑𝒅) value (see Figure 10),  𝑟(10) = −.81, 𝑝 = .001. 
In parallel with the results for the number of covariant features (𝒌), for data points 
grouped by invariance distribution, average global CP scores were very strongly 
negatively correlated with average category-learning difficulty (see Figure 11), 𝑟(12) =
−.97, 𝑝 < .001. 

Figure 6. A positive trend is observed for minimal loss achieved 
as a function of the number of covariant microfeatures for 
categories with distributed invariants. 



Number of relevant locations (𝒅) as a predictor of learning difficulty and CP 
 

The correlation between the number of relevant locations (𝒅) and learning 
difficulty was evaluated. The average category learning difficulty was positively correlated 
with the number of relevant locations (𝒅) for data points grouped by number of relevant 
locations (𝒅) and averaged across all other parameters (see Figure 12), 𝑟(12) = .85, 𝑝 <
.001. 

 

 
 

 
 
Further analyses showed that average global CP scores were strongly negatively 

correlated with number of relevant locations (𝒅) for data points grouped by number of 

Figure 8. A negative trend is observed for global CP as a function 
of minimum loss achieved by the net for data points grouped by 
number of relevant locations. 

Figure 7. A positive trend is observed for minimum loss reached 
by the neural net as a function of the number of covariant 
micro-features for all categories. 



relevant locations (𝒅) and averaged across all other parameters (see Figure 13), 𝑟(12) =
−.79, 𝑝 = .001.  
 
 

Noise (𝒑𝒏𝒐𝒊𝒔𝒆) as a predictor of learning difficulty  

 
Last, a near perfect positive correlation was found between average learning difficulty 
and the stimulus noise parameter value (𝒑𝒏𝒐𝒊𝒔𝒆) for data points grouped by stimulus noise 
parameter value (𝒑𝒏𝒐𝒊𝒔𝒆) and averaged across all other parameters (see Figure 14), 
𝑟(4) =  .99, 𝑝 = .02. 

Figure 9. A positive trend is observed for minimum loss achieved 
as a function of invariance distribution for data points grouped 
by invariance distribution parameter. 

Figure 10. A negative trend is observed for global CP as a 
function of the invariance distribution parameter for data points 
grouped by the invariance parameter. 



 

Discussion 
 
 The present study sheds light on the intricacies of determining what aspects of 
category structure and rule may increase or decrease category-learning difficulty. In 
previous experiments (Pérez-Gay Juárez et al., 2019; Thériault et al., 2018), the stimuli 
generated for testing with humans had fixed parameters 𝒅, 𝒑𝒅 and 𝒑𝒏𝒐𝒊𝒔𝒆 whereas 
varying parameters 𝒅 and 𝒑𝒅 were used in neural net simulations. For the texture-like 
stimuli used in human experiments, the number of relevant locations (𝒅) was all possible 
locations in the stimuli, the invariance distribution parameter (𝒑𝒅) was maximal (i.e., 
features were uniformly distributed) and the noise parameter (𝒑𝒏𝒐𝒊𝒔𝒆) was null. As for 
the stimuli used in the neural net simulations, the number of relevant locations (𝒅) was 
equal to the number of 𝒌 covariant features, the invariance distribution parameter (𝒑𝒅) 
varied from 1 to 𝒌 and the noise parameter (𝒑𝒏𝒐𝒊𝒔𝒆)  was again null. The a-priori levels of 

Figure 11. A negative trend is observed for global CP as a 
function of minimum loss achieved by the net for data points 
grouped by the invariance distribution parameter. 

Figure 12. A positive trend is observed for minimum loss 
achieved by the net as a function of the number of relevant 
locations for data points grouped by the number of relevant 
locations. 



difficulty were defined as the ratio of k/N as described above (see Methods) and were 
confirmed both in human and neural net experiments. It is important to note that the 
simulations in the present study, unlike those in previous studies, involved a fixed number 
of trials as opposed to a fixed accuracy criterion with unlimited trials since we were 
attempting to quantify category-learning difficulty and relate it to global CP. 
 

 
We find that for a constant number of training epochs, as category-learning 

difficulty increases, measured by the minimum loss value achieved by the neural net, 
global CP scores decrease (see Figure 4). This trend is also observed for global CP scores 

and category-learning difficulty averaged for data points grouped by parameters 𝒌 and 
𝒑𝒅 (see Figure 8 and Figure 11).  

Figure 13. A negative trend is observed for global CP as a 
function of the number of relevant locations for data points 
grouped by number of relevant locations. 

Figure 14. A positive trend is observed for minimum loss 
achieved by the neural net as a function of noise for 
categories grouped by noise parameter value. 



This result does not contradict what is expected in experimental outcomes with humans 
since more learning trials are needed to learn more difficult categories (Pérez-Gay Juárez 
et al., 2019). Our results suggest that still more reshaping of the stimulus representation 
space is needed to achieve high levels of categorization accuracy for more complex 
categories (see Figures 15 and 16). Therefore, we hypothesize that this additional 
reshaping of the similarity space will result in the higher global CP scores that are 
expected for more difficult categories when learning trials are unlimited until a fixed 
accuracy criterion is reached.  
 

 

Partial confirmation of our hypothesis on the number of covariant features is given 
by the decrease in category-learning difficulty as 𝒌 increases but only for local invariance 
where 𝒑𝒅 = 1 (see Figure 5). As for the extreme case of distributed invariance where 
𝒑𝒅 = 12, we observe the initially counterintuitive result that as 𝒌 increases, so does 
category-learning difficulty (see Figure 6). This is explained by the fact that as 𝒌 increases 
for categories with distributed invariance, within-category variance increases 
combinatorially leading to the increased category-learning difficulty. Moreover, we 
observe that the general trend for increasing values of 𝒌 is an increase in category-



learning difficulty (see Figure 7). This is explained by the fact that as 𝒌 increases, on 
average category-learning difficulty also increases since the possibilities for distributed 
cases increase. For example, if we consider 𝒌 = 1, there is no possible distributed case 
since there is only one micro-feature and 𝒑𝒅 = 1 for all categories. As 𝒌 increases, so do 
the possibilities for how distributed the invariance can be. In other words, there is 
possibility for  𝒑𝒅 ≥ 1 leading to partially and fully distributed invariance far outweighing 
the difficulty of local cases.  

 
 An invariance distribution continuum was initially hypothesized to be correlated 
with category-learning difficulty, from local invariance as the easiest case to learn to fully 
distributed invariance as the most difficult case. This hypothesis was confirmed by our 
results which demonstrated that as the value of the invariance distribution parameter 𝒑𝒅 
increases, so does category-learning difficulty (see Figure 10). As explained above, an 
increase in within-category variance necessarily follows from an increase in 𝒑𝒅. 
Moreover, all neural nets were tested with a constant category sample size. This implies 
that for categories with higher values of 𝒑𝒅, the constant sample size is a smaller 
proportion of the category seen by the neural net, which results in higher categorization 
uncertainty and thus lower categorization accuracy.  
 
 The less conclusive results obtained for the number of relevant locations 
parameter (𝒅) suggest that on average as the number of locations increases, so does 
category-learning difficulty (see Figure 12). This result was unexpected since we 
hypothesized that increasing the number of relevant locations would decrease within-
category variance. It is unclear whether this correlation is explained by the parameter 𝒅 
alone since further analysis suggests that there is almost no correlation between this 
parameter and category-learning difficulty when the data are analyzed independently for 
each possible value of 𝒌 for categories where 𝒑𝒏𝒐𝒊𝒔𝒆 = 0. It was expected that for small 
values of 𝒌, a negative trend would be observed and that as 𝒌 increased, a gradual 
reversal in the trend would be observed. For cases where 𝒌 = 1, as 𝒅 increases, it is 
expected that category-learning difficulty would increase since in this case one covariant 
feature is increasingly present in the stimulus and the number of positions containing 
noise decreases proportionally. Conversely, for higher values of 𝒌, the opposite trend 
would be expected since the possible combinations of 𝒌 covariant features increase 
combinatorially, especially for highly distributed invariance as is suggested by the analysis 
above of the 𝒑𝒅 parameter. Further testing and experimentation are necessary to 
elucidate the relation between the number of relevant locations and category-learning 
difficulty.  
 

Last, we obtained strong evidence for the trivial claim that as perturbation 
increases within the category sample fed to the neural net, category-learning difficulty 
also increases (see Figure 15). 



Limitations and Further Experiments 
  

An important limitation of the present study is that the neural net architecture 
used for our simulations was not sufficiently complex to learn the harder categories with 
accuracy equivalent to that obtained for the easier categories, even with more learning 
trials. To test for the hypothesis that as category learning difficulty increases more global 
CP is necessary, a neural net capable of learning error-free categorization for all 
categories tested is necessary with recordings after some fixed number of learning trials 
and after error-free categorization is achieved. Furthermore, it is unclear what the weight 
of the invariance distribution parameter is for category learning-difficulty with respect to 
other parameters as demonstrated by the inconclusive results obtained with respect to 
the number of relevant locations (𝒅) and the negative trend obtained for category-
learning difficulty as a function of the number of relevant locations (𝒌). As such, further 
testing and experiments will also need to account for the variance explained by each of 
the parameters in category-learning difficulty. Lastly, due to time constraints, we were 
unable to compute categorization task complexity using a priori measures such as those 
presented in Lorena et al. (2020). We believe that such measures would serve to cross-
validate the category-learning difficulty framework presented here as well as increase 
explanatory power. 

Conclusion 
 
 In the present study, our results suggest that as category-learning difficulty 
increases for a constant number of training epochs, global CP scores decrease. This is 
thought to be a consequence of insufficient reshaping of the stimulus representation 
space to allow for similar accuracy levels across categories with varying difficulty levels. 
Therefore, supposing that global CP is a measure of category separation in stimulus 
representation space, we hypothesize that for a fixed accuracy criterion with unlimited 
learning trials, global CP scores should be higher for more complex categories. Moreover, 
our results suggest that as the number of covariant locations increases, there is on 
average an increase in category-learning difficulty, but it remains unclear why that is the 
case. The same correlation has been suggested by our data for invariance distribution. 
That is, the more distributed the invariance is within stimuli of a category, the more 
difficult it is to learn that invariance for a constant number of epochs and category sample 
size.  

Appendix 
 

Neural net architecture 
 

 The neural net architecture used in the present study follows closely the one 
suggested by Thériault et al. (2018): A denoising autoencoder is fed noisy examples 𝒙 and 



trained to reconstruct learned examples 𝒙. This forces some internal feature encoding. In 
total the model has 3 layers: the input layer, the hidden layer, and the output layer. The 
forward and feedback activation of layer 𝒉 and layer x are respectively given by 
 

𝒉 = 𝒇(𝑾𝒙  + 𝒃𝒉) 
 

𝒙 = 𝒇(𝑾𝑻𝒉 + 𝒃𝒙) 
 
where 𝒇 is a non-linear activation function, 𝑾 is the connection weights between the 
layers, and 𝒃 is an activation bias. The weights 𝑾 are progressively modified through 
gradient-descent error signal backpropagation to minimize the mean-squared error 

(MSE) loss function 𝑴𝑺𝑬 =
𝟏

𝑵
 ∑ (𝒙 − 𝒇(𝒉(𝒙)))𝑵

𝒊=𝟏

𝟐
 which is the mean squared 

difference between the net’s predicted output and the correct output. Once the 
autoencoder has sufficiently minimized this loss, the inner representations (e.g., the 
encoded inputs) are used by the net to learn the categories through error-corrective 
feedback given by the MSE loss function and backpropagation. At each trial, the weights 
𝑾 are modified so that category labels are learned. 

 

Global CP computation 
 

 To compute global CP scores, we first generate inner representations of all 
category samples for a given simulation immediately after the autoencoder has been 
trained. Euclidean distance matrices for within- and between-category distances  are then 
computed using those representations. From these matrices, average within- and 
between-category distances are computed. Between- and within-category distance 
differences are then computed by subtracting distances before supervised learning from 
distances after supervised learning. The global CP scores consist in the difference 
between the mean between-category distance difference (separation) and the mean 

Figure 3. General autoencoder architecture. Adapted 
from Pérez-Gay et al. 2017. 



within-category distance difference (compression). Let 𝑫𝑨, 𝑫𝑩 and 𝑫𝑨,𝑩 be the average 

Euclidean distances within 𝐴 and 𝐵 and between 𝐴 and 𝐵 respectively. We compute as 
follows between-category separation 𝑺𝑷𝒃, within-category compression 𝑺𝑷𝒘 and global 
CP scores 𝑪𝑷𝑮: 
 

𝑺𝑷𝒘  =
((𝐃𝐀

𝒔 − 𝑫𝑨
𝒖 ) + (𝑫𝑩

𝒔 − 𝑫𝑩
𝒖 ))

2
 

𝑺𝑷𝒃  = 𝐃𝐀,𝐁
𝐬 − 𝑫𝑨,𝑩

𝒖  

 

𝑪𝑷𝑮 = 𝑺𝑷𝒃 − 𝑺𝑷𝒘 

 

 
 

Implementation details 
 

The custom code used for the simulations, analyses and other computations was 
done in Python 3 using various machine learning libraries and will be made available on 
GitHub. 
 

 

 

 

Figure 4. General autoencoder architecture feeding into a 
categorization layer. Adapted from Pérez-Gay et al. 2017. 

https://github.com/AlephG
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